Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein
    Date: 2013
    Source: Forest Pathology. 43: 468-477.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (852.7 KB)


    Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks sapwood as mycelial fans under the bark. Armillaria root disease is responsible for reduced forest productivity due to direct tree mortality and non-lethal infections that impact growth. Here, we characterize a transcriptome of a widespread, virulent genet (vegetative clone) of A. solidipes isolated from a mycelial fan on a natural grand fir (Abies grandis) sapling in northern Idaho, USA. cDNA from polyA+-purified total RNA was sequenced using a singleend read approach on the Illumina GAIIx platform which generated 24 170 384 reads. A BLASTx search against the NCBI nr database using 39 943 de novo assembled contigs resulted in 24 442 sequences with significant hits (e-value < 1e 3), predominantly to fungi (85%). A filtered data set of 20 882 assembled transcripts that encoded putative homologous fungal proteins was created and used for all subsequent analyses. Signal P identified 10 668 putative signal peptides from these fungal transcripts, and 14 360 were annotated with gene ontology terms. Several sequences showed strong homology to annotated genes with functions in pathogenesis, specifically those involved in plant cell wall degradation and response to the post-infection host environment. This transcriptome contributes to the growing body of resources for studies on fungal pathogens of woody plants, and our results provide useful insights towards identifying specific genes with potential roles associated with pathogenesis and other metabolic functions.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Ross-Davis, A. L.; Stewart, J. E.; Hanna, J. W.; Kim, M.-S.; Knaus, B. J.; Cronn, R.; Rai, H.; Richardson, B. A.; McDonald, G. I.; Klopfenstein, N. B. 2013. Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host­-pathogen interface. Forest Pathology. 43: 468-477.


    Google Scholar


    Armillaria, root disease pathogen, transcriptome

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page