Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    The transition of surface fire to live shrub crown fuels was studied through a simplified laboratory experiment using an open-topped wind tunnel. Respective surface and crown fuels used were excelsior (shredded Populus tremuloides wood) and live chamise (Adenostoma fasciculatum, including branches and foliage). A high crown fuel bulk density of 6.8 kgm-3 with a low crown fuel base height of 0.20m was selected to ensure successful crown fire initiation. Diagnostics included flame height and surface fire evolution. Experimental results were compared with similar experiments performed in an open environment, in which the side walls of the wind tunnel were removed. The effect of varying wind speed in the range 0–1.8ms-1, representing a Froude number range of 0–1.1, on crown fire initiation was investigated. The suppression of lateral entrainment due to wind tunnel walls influenced surface fire behavior. When wind speed increased from 1.5 to 1.8ms-1, the rate of spread of surface fire and surface fire depth increased from 5.5 to 12.0 cm s-1 and 0.61 to 1.02 m. As a result, the residence time of convective heating significantly increased from 16.0 to 24.0 s and the hot gas temperature at the crown base increased from 994 to 1141 K. The change in surface fire characteristics significantly affected the convective energy transfer process. Thus, the net energy transfer to the crown fuel increased so the propensity for crown fire initiation increased. In contrast, increasing wind speed decreased the tendency for crown fuel initiation in an open environment because of the cooling effect from fresh air entrainment via the lateral sides of surface fire.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Tachajapong, W.; Lozano, S.; Mahalingam, S.; Weise, D.R. 2014 Experimental modeling of crown fire initiation in open and closed shrubland systems. International Journal of Wildland Fire 23: 451-462, doi:10.1071/WF12118


    Google Scholar


    fire behavior, fire prevention

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page