Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Emily Cohen; Scott Pearson; Frank Moore
    Date: 2014
    Source: Ecological Applications. 24(1): 169-180
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (1.5 MB)


    The behavior of long-distance migrants during stopover is constrained by the need to quickly and safely replenish energetic reserves. Replenishing fuel stores at stopover sites requires adjusting to unfamiliar landscapes with little to no information about the distribution of resources. Despite their critical importance to the success of songbird migration, the effects of landscape composition and configuration on fuel deposition rates (FDR [g/d]), the currency of migration, has not been tested empirically. Our objectives were to understand the effects of heterogeneous landscapes on FDR of forest-dwelling songbirds during spring migration. The results of field experiments were used to parameterize a spatially explicit, individual-based model of forest songbird movement and resulting FDR. Further field experiments were used to validate the results from the individual-based model. In simulation experiments, we altered a Gulf South landscape in a factorial design to predict the effects of future patterns under different scenarios of land use change in which the abundance of high-quality hardwood habitat and the spatial aggregation of habitat varied. Simulated FDR decreased as the amount of hardwood in the landscape decreased from 41% to 22% to 12%. Further, migrants that arrived in higher-quality habitat types gained more mass. Counter to our expectations, FDR was higher with lower spatial aggregation of habitat. Differences in refueling rates may be most influenced by whether or not an individual experiences an initial searching cost after landing in poor-quality habitat. Therefore, quickly locating habitat with sufficient food resources at each stopover may be the most important factor determining a successful migration. Our findings provide empirical evidence for the argument that hardwood forest cover is a primary determinant of the quality of a stopover site in this region. This study represents the first effort to empirically quantify FDRs based on the configuration of landscapes.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Cohen, Emily B.; Pearson, Scott, M.; Moore, Frank R. 2014. Effects of landscape composition and configuration on migrating songbirds: inference from and individual-based model. Ecological Applications. 24(1): 169-180. Doi: 10.1890/12-1867.1


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page