Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ronald E. McRobertsBrian F. Walters
    Date: 2012
    Source: Remote Sensing of Environment. 124: 394-401.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (850.97 KB)

    Description

    Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confidence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net deforestation is illustrated. The approach is based on post-classification methods using two independent forest/non-forest classifications because sufficient numbers of observations of forest/non-forest change were not available for direct classification. Further, the approach uses a model-assisted estimator with information from a traditional error matrix for the forest/non-forest classifications to compensate for bias as the result of classification errors and to estimate variances. Classifications were obtained using a logistic regression model, forest inventory data, and two dates of Landsat imagery, although the approach to inference can be used with multiple classification approaches. For the study area in northeastern Minnesota, USA, overall pixel-level accuracies for the year 2002 and 2007 forest/non-forest classifications were 0.85-0.88, and estimates of proportion net deforestation for the 2002-2007 interval were less in absolute value than 0.015. However, standard errors for the remote sensing-based estimates of net deforestation were on the order of 0.02-0.04, meaning that the estimates were not statistically significantly different from zero. Particular attention is directed to the potentially severe sample size and classification accuracy requirements necessary for estimates of net deforestation to be detected as statistically significantly different from zero.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    McRoberts, Ronald E.; Walters, Brian F. 2012. Statistical inference for remote sensing-based estimates of net deforestation. Remote Sensing of Environment. 124: 394-401.

    Cited

    Google Scholar

    Keywords

    Landsat, Forest inventory, Error matrix, Model-assisted estimator

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/46122