Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): T.C. McDonnell; T.J. Sullivan; B.J. Cosby; W.A. Jackson; K.J. Elliott
    Date: 2013
    Source: Water Air and Soil Pollution
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (674.73 KB)


    Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees. This study used a process model (Model of Acidification of Groundwater in Catchments [MAGIC]) to address a number of questions related to soil BC status for a group of 65 streams and their watersheds in the southern Blue Ridge physiographic province of the southern Appalachian Mountains. Future S deposition to the study watersheds used for the Base Scenario was specified according to proposed reductions in S emissions at the time of this study, representing a reduction of 42 % of ambient S deposition by 2020. Twenty additional simulations were considered, reflecting four alternate S deposition scenarios (6 %, 58 %, 65 %, and 78 % reduction), and various changes in timber harvest, temperature, and precipitation. Base Scenario soil exchangeable Ca and % base saturation showed decreasing trends from 1860 to 2100. Changes in tree harvesting had the largest effect on stream sum of base cations (SBC) and soil BC supply. Each of the scenario projections indicated that median year 2100 soil exchangeable Ca will be at least 20 % lower than pre-industrial values. The simulations suggested that substantial mass loss of soil BC has already occurred since pre-industrial times. Nearly the same magnitude of BC loss is expected to occur over the next 145 years, even under relatively large additional future reductions in S deposition.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    McDonnell, T.C.; Sullivan, T.J.; Cosby, B.J.; Jackson, W.A.; Elliott, K.J. 2013. Effects of climate, land management, and sulfur deposition on soil base cation supply in national forests of the southern Appalachian mountains. Water Air and Soil Pollution. 224(10): 1733. DOI: 10.1007/s11270-013-1733-8


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page