Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ronald E. McRoberts
    Date: 2011
    Source: Remote Sensing of Environment. 115(2): 715-724.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (508.53 KB)


    The scientific method has been characterized as having two distinct components, Discovery and Justification. Discovery emphasizes ideas and creativity, focuses on conceiving hypotheses and constructing models, and is generally regarded as lacking a formal logic. Justification begins with the hypotheses and models and ends with a valid scientific inference. Unlike Discovery, Justification has a formal logic whose rules must be rigorously followed to produce valid scientific inferences. In particular, when inferences are based on sample data, the rules of the logic of Justification require assessments of bias and precision. Thus, satellite image-based maps that lack such assessments for parameters of populations depicted by the maps may be of little utility for scientific inference; essentially, they may be just pretty pictures. Probability- and model-based approaches are explained, illustrated, and compared for producing inferences for population parameters using a map depicting three land cover classes: non-forest, coniferous forest, and deciduous forest. The maps were constructed using forest inventory data and Landsat imagery. Although a multinomial logistic regression model was used to classify the imagery, the methods for assessing bias and precision can be used with any classification method. For probability-based approaches, the difference estimator was used, and for model-based inference, a bootstrap approach was used.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    McRoberts, Ronald E. 2011. Satellite image-based maps: Scientific inference or pretty pictures?. Remote Sensing of Environment. 115(2): 715-724.


    Google Scholar


    Probability-based inference, Model-based inference, Forest inventory, Accuracy, Bias, Precision, Multinomial logistic regression

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page