Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): K.J. Anlauf; D.W. Jensen; K.M. Burnett; E.A. Steel; K. Christiansen; J.C. Firman; B.E. Feist; D.P. Larsen
    Date: 2011
    Source: Aquatic Conservation: Marine and Freshwater Ecosystems. 21: 704-714
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (289.46 KB)


    1. The distribution and composition of in-stream habitats are reflections of landscape scale geomorphic and climatic controls. Correspondingly, Pacific salmon (Oncorhynchus spp.) are largely adapted to and constrained by the quality and complexity of those in-stream habitat conditions. The degree to which lands have been fragmented and managed can disrupt these patterns and affect overall habitat availability and quality.
    2. Eleven in-stream habitat features were modelled as a function of landscape composition. In total, 121 stream reaches within coastal catchments of Oregon were modelled. For each habitat feature, three linear regression models were applied in sequence; final models were composed of the immutable and management-influenced landscape predictors that best described the variability in stream habitat.
    3. Immutable landscape predictors considered proxies for stream power described the majority of the variability seen in stream habitat features. Management-influenced landscape predictors, describing the additional human impacts beyond that which was inherently entwined with the immutable predictors, explained a sizeable proportion of variability. The largest response was seen in wood volume and pool frequency.
    4. By using a sequential linear regression analysis, management-influenced factors could be segregated from natural gradients to identify those stream habitat features that may be more sensitive to land-use pressures. These results contribute to the progressing notion that the conservation of freshwater resources is best accomplished by investigating and managing stream systems from a landscape perspective.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Anlauf, K.J.; Jensen, D.W.; Burnett, K.M.; Steel, E.A.; Christiansen, K.; Firman, J.C.; Feist, B.E.; Larsen, D.P. 2011. Explaining spatial variability in stream habitats using both natural and management-influenced landscape predictors. Aquatic Conservation: Marine and Freshwater Ecosystems. 21: 704-714.


    Google Scholar


    Coho salmon, fish habitat, landscape ecology, coastal, stream, Oregon, monitoring, conservation evaluation

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page