Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    One of the major abiotic stress conditions limiting healthy growth of trees is salinity stress. The use of gene manipulation for increased tolerance to abiotic stress has been successful in many plant species. Overexpression of the Arabidopsis SALT TOLERANT1 (STO1) gene leads to increased concentrations of 9-cis-epoxycarotenoid dioxygenase3, a vital enzyme in Arabidopsis abscisic acid biosynthesis. In the present work, the Arabidopsis STO1 gene (AtSTO1) was overexpressed in poplar to determine if the transgene would confer enhanced salt tolerance to the generated transgenics. The results of multiple greenhouse trials indicated that the transgenic poplar lines had greater levels of resistance to NaCl than wild-type plants. Analysis using RT-PCR indicated a variation in the relative abundance of the STO1 transcript in the transgenics that coincided with tolerance to salt. Several physiological and morphological changes such as greater overall biomass, greater root biomass, improved photosynthesis, and greater pith size were observed in the transgenics when compared to controls undergoing salt stress. These results indicated overexpression of AtSTO1 improved salt tolerance in poplar.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Lawson, Shaneka S.; Michler, Charles H. 2014. Overexpression of AtSTO1 leads to improved salt tolerance in Populus tremula × P. alba. Transgenic Research. [15 June 2014].


    Google Scholar


    Salt tolerance, Poplar, Arabidopsis, STO1, Pith

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page