Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Masahiro Samejima; David Hibbett; Bernard Henrissat; Dan Cullen
    Date: 2013
    Source: Mycologia, Volume 105, Number 6, 2013; pp. 1412–1427.
    Publication Series: Scientific Journal (JRNL)
    Station: Forest Products Laboratory
    PDF: View PDF  (2.34 MB)

    Description

    To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (LPMO, formerly GH61), also have been implicated in cellulose degradation. To examine polysaccharide-degrading potential between white- and brown-rot fungi, we performed genomewide analysis of CAZys and these oxidative enzymes in 11 Polyporales, including recently sequenced monokaryotic strains of Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Furthermore, we conducted comparative secretome analysis of seven Polyporales grown on wood culture. As a result, it was found that genes encoding cellulases belonging to families GH6, GH7, GH9 and carbohydrate-binding module family CBM1 are lacking in genomes of brown-rot polyporales. In addition, the presence of CDH and the expansion of LPMO were observed only in white-rot genomes. Indeed, GH6, GH7, CDH and LPMO peptides were identified only in white-rot polypores. Genes encoding aldose 1-epimerase (ALE), previously detected with CDH and cellulases in the culture filtrates, also were identified in white-rot genomes, suggesting a physiological connection between ALE, CDH, cellulose and possibly LPMO. For hemicellulose degradation, genes and peptides corresponding to GH74 xyloglucanase, GH10 endo-xylanase, GH79 &#beta;-glucuronidase, CE1 acetyl xylan esterase and CE15 glucuronoyl methylesterase were significantly increased in white-rot genomes compared to brown-rot genomes. Overall, relative to brown-rot Polyporales, white-rot Polyporales maintain greater enzymatic diversity supporting lignocellulose attack.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Hori, Chiaki; Gaskell, Jill; Igarashi, Kiyohiko; Samejima, Masahiro; Hibbett, David; Henrissat, Bernard; Cullen, Dan 2013. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia, Volume 105, Number 6, 2013; pp. 1412–1427.

    Cited

    Google Scholar

    Keywords

    carbohydrate active enzymes, genome, proteome, Secretome, wood-rot fungi

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page