Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Cynthia J. Tant; Amy D. Rosemond; Matthew R. First
    Date: 2013
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (140.3 KB)

    Description

    Nutrient enrichment affects bacteria and fungi associated with detritus, but little is known about how biota associated with different size fractions of organic matter respond to nutrients. Bacteria dominate on fine (<1 mm) and fungi dominate on coarse (>1 mm) fractions, which are used by different groups of detritivores. We measured the effect of experimental nutrient enrichment on fungal and bacterial biomass, microbial respiration, and detrital nutrient content on benthic fine particulate organic matter (FPOM) and coarse particulate organic matter (CPOM). We collected FPOM and CPOM from 1 reference and 1 enriched stream. CPOM substrates consisted of 2 litter types with differing initial C:nutrient ratios (Acer rubrum L. and Rhododendron maximum L.). Fungal and bacterial biomass, respiration, and detrital nutrient content changed with nutrient enrichment, and effects were greater on CPOM than on FPOM. Fungal biomass dominated on CPOM (¡­99% total microbial biomass), whereas bacterial biomass dominated on FPOM (¡­95% total microbial biomass). These contributions were unchanged by nutrient enrichment. Bacterial and fungal biomass increased more on CPOM than FPOM. Respiration increased more on CPOM (up to 300% increase) than FPOM (¡­50% increase), indicating important C-loss pathways from these resources. Microbial biomass and detrital nutrient content were positively related. Greater changes in nutrient content were observed on CPOM than on FPOM, and changes in detrital C:P were greater than changes in detrital C:N. Threshold elemental ratios analyses indicated that enrichment may reduce P limitation for shredders and exacerbate C limitation for collector-gatherers. Changes in CPOM-dominated pathways are critical in predicting shifts in detrital resource quality and C flow that may result from nutrient enrichment of detritus-based systems.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Tant, Cynthia J.; Rosemond, Amy D.; First, Matthew R. 2013. Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter. Freshwater Science. 32(4): 1111-1121.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/46470