Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): E. Peterson; E. Hansen; J. Hulbert
    Date: 2014
    Source: Forest Ecology and Management. 322:48–57
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (1.41 MB)

    Description

    Management of invasive species requires confidence in the detection methods used to assess expanding distributions, as well as an understanding of the dominant modes of spread. Lacking this basic biological information, during early stages of invasion management choices are often driven by available resources and the biology of closely related species. Such has been the case for the management of the phytopathogen, Phytophthora ramorum , causal agent of sudden oak death (SOD) of oaks and tanoaks. To detect P. ramorum , The Oregon SOD eradication program has relied upon the aerial observation of dead, overstory tanoak (Notholithocarpus densiflorus), an easily infected host widely distributed throughout the range of P. ramorum in Oregon. At risk is the possibility of misrepresenting the distribution of SOD, particularly if inoculum is predominately moved in soil and water, common dispersal pathways for other Phytophthora spp. To assess this risk, we performed surveys of understory vegetation in areas with a high risk of establishment of understory infection from soil and water sources: along roadsides within heavily trafficked areas with a history of SOD, and along streams known to contain P. ramorum inoculum. Additionally, we tested the alternative hypothesis of aerial dispersal, whereby infection in the understory would be spatially correlated with overstory mortality. Consistent with prior studies into the spatial structure of P. ramorum in Oregon, we found no evidence of understory infection in close proximity to roads in the absence of overstory mortality. Similarly, P. ramorum was only isolated from understory vegetation associated with streams when within close proximity to overstory sources, and more commonly further away from stream edges than within the splash and flood line. Both disease patterns are inconsistent with a dominate soil and water mediated dispersal mechanism. Rather, we found evidence supporting our alternative hypothesis of aerial dispersal whereby recovery of P. ramorum in the understory declined with increasing distance from the only known overstory source. These results support the use of aerial detection in describing the distribution of SOD in Oregon, and give further support to dispersal of inoculum in blowing fog or rain at scales not yet described for other forest Phytophthora species.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Peterson, E.; Hansen, E.; Hulbert, J. 2014. Source or Sink? The Role of Soil and Water Borne Inoculum in the Dispersal of Phytophthora ramorum in Oregon Tanoak Forests. Forest Ecology and Management. 322:48–57.

    Cited

    Google Scholar

    Keywords

    aerial dispersal, disease gradients, forest pathology, invasive pathogens, Phytophthora ramorum, sudden oak death

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page