Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): H.E. Erickson; E.H. HelmerT.J. Brandeis; A.E. Lugo
    Date: 2014
    Source: Ecosphere 5. Article 48.
    Publication Series: Scientific Journal (JRNL)
    Station: International Institute of Tropical Forestry
    PDF: Download Publication  (4.81 MB)


    Litter chemistry varies across landscapes according to factors rarely examined simultaneously. We analyzed 11 elements in forest floor (fallen) leaves and additional litter components from 143 forest inventory plots systematically located across Puerto Rico, a tropical island recovering from large-scale forest clearing. We assessed whether three existing, independently-derived, landscape classifications (Holdridge life zone, remotely sensed forest type (leaf longevity combined with geology generalized to karst vs. non-karst), and plot-based measures of forest assemblage) would separate observed gradients. With principal component and regression analyses, we also tested whether climate-, landscape- (geology, elevation, aspect, percent slope, slope position, distance from coast), and stand-scale (tree species composition, basal area, density, stand age) variables explained variation in fallen leaf chemistry and stoichiometry. For fallen leaves, C, Ca, Mg, Na, and Mn concentrations differed by Holdridge life zone and C, P, Ca, Mn, Al, and Fe concentrations differed by forest type, where leaf longevity distinguished C and Ca concentrations and geology distinguished C, P, Ca, Mn, Al, and Fe concentrations. Fallen leaf C, P, Ca, and Mn concentrations also differed, and N concentrations only differed, by forest assemblage. Across several scales, fallen leaf N concentration was positively related to the basal area of putatively N2-fixing tree legumes, which were concentrated in lower topographic positions, providing for the first time a biological explanation for the high N concentrations of fallen leaves in these locations. Phosphorus concentrations in fallen leaves by forest assemblages also correlated with the basal area of N2-fixing legumes, and P and N concentrations decreased with mean age of assemblage. Fallen leaves from younger (<50 yr, 86% of the plots) and often novel forests had higher P, Fe, and Al and lower C concentrations and lower C/P and N/P ratios than fallen leaves from older forests, the latter due to a decrease in P rather than changes in N. These findings suggest that both N and P availability may currently be greater on the island than pre-deforestation, and substantiate the unique roles that state factors play in contributing to the spatial heterogeneity of fallen leaf chemistry.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Erickson, H.E.; Helmer, E.H.; Brandeis, T.J.; Lugo, A.E. 2014. Controls on fallen leaf chemistry and forest floor element masses in native and novel forests across a tropical island. Ecosphere 5. Article 48.


    Google Scholar


    C:N ratio, forest floor mass, landscape analyses, leaf litter chemistry, N:P ratio, novel forests, precipitation, effects, stand age, stoichiometry, subtropical forests, tropical legumes, variance analysis

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page