Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Yoichiro Kanno; Benjamin H. Letcher; Jason A. Coombs; Keith H. Nislow; Andrew R. Whiteley
    Date: 2014
    Source: Freshwater Biology. 59(1): 142-154.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (403.43 KB)


    Defining functional connectivity between habitats in spatially heterogeneous landscapes is a particular challenge for small-bodied aquatic species. Traditional approaches (e.g. mark-recapture studies) preclude an assessment of animal movement over the life cycle (birth to reproduction), and movement of individuals may not represent the degree of gene movement for fecund species. We investigated the degree of habitat connectivity (defined as the exchange of individuals and genes between mainstem and tributary habitats) in a stream brook trout (Salvelinus fontinalis) population using mark-recapture [passive integrated transponder (PIT) tags], stationary PIT-tag antennae and genetic pedigree data collected over 4 years (3425 marked individuals). We hypothesised that: (i) a combination of these data would reveal higher estimates of animal movement over the life cycle (within a generation), relative to more temporally confined approaches, and (ii) movement estimates of individuals within a generation would differ from between-generation movement of genes because of spatial variation in reproductive success associated with high fecundity of this species. 3. Over half of PIT-tagged fish (juveniles and adults) were recaptured within 20 m during periodic sampling, indicating restricted movement. However, continuous monitoring with stationary PIT-tag antennae revealed distinct peaks in trout movements in June and October-November, and sibship data inferred post-emergence movements of young-of-year trout that were too small to be tagged physically. A combination of these methods showed that a moderate portion of individuals (28-33%) moved between mainstem and tributary habitats over their life cycle. Patterns of reproductive success varied spatially and temporally. The importance of tributaries as spawning habitat was discovered by accounting for reproductive history. When individuals born in the mainstem reproduced successfully, over 50% of their surviving offspring were inferred to have been born in tributaries. This high rate of gene movement to tributaries was cryptic, and it would have been missed by estimates based only on movement of individuals. This study highlighted the importance of characterising animal movement over the life cycle for inferring habitat connectivity accurately. Such movements of individuals can contribute to substantial gene movements in a fecund species characterised by high variation in reproductive success.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Kanno, Yoichiro; Letcher, Benjamin H.; Coombs, Jason A.; Nislow, Keith H.; Whiteley, Andrew R. 2014. Linking movement and reproductive history of brook trout to assess habitat connectivity in a heterogeneous stream network. Freshwater Biology. 59(1): 142-154.


    Google Scholar


    dispersal, fitness, functional connectivity, gene flow, reproductive success

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page