Skip to main content
U.S. flag

An official website of the United States government

Tree height and tropical forest biomass estimation

Author(s):

M.O. Hunter
D. Vitoria
D.C. Morton

Year:

2013

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

International Institute of Tropical Forestry

Source:

Biogeosciences. 10:8385-8399

Description

Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass. Previous work has shown that the inclusion of height in biomass allometries, compared to the sole use of diameter, significantly improves biomass estimation accuracy. Here, we evaluate the effect of height measurement error on biomass estimation and we evaluate the accuracy of recently published diameter : height allome10 tries at four sites within the Brazilian Amazon. As no destructive sample of biomass was available at these sites, reference biomass values were based on allometries.We found that the precision of individual tree height measurements ranged from 3 to 20% of total height. This imprecision resulted in a 5–6% uncertainty in biomass when scaled to 1 ha transects. Individual height measurement may be replaced with existing regional and global height allometries. However, we recommend caution when applying these relations. At Tapajós National Forest in the Brazilian state of Pará, using the pantropical and regional allometric relations for height resulted in site biomass 26% to 31% less than reference values. At the other three study sites, the pan-tropical equation resulted in errors of less that 2 %, and the regional allometry produced errors of less than 12%. As an alternative to measuring all tree heights or to using regional and pantropical relations, we recommend measuring height for a well distributed sample of about 100 trees per site. Following this methodology, 95% confidence intervals of transect biomass were constrained to within 4.5% on average when compared to reference values.

Citation

Hunter, M.O.; Keller, M.; Vitoria, D.; Morton, D.C. 2013. Tree height and tropical forest biomass estimation. Biogeosciences. 10:8385-8399.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/46658