Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Sparkle L. Malone; Christina L. Staudhammer; Henry W. Loescher; Paulo Olivas; Steven F. Oberbauer; Michael G. Ryan; Jessica Schedlbauer; Gregory Starr
    Date: 2014
    Source: Journal of Geophysical Research: Biogeosciences. 119(8): 1487-1505.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (1.92 MB)

    Description

    We analyzed energy partitioning in short- and long-hydroperiod freshwater marsh ecosystems in the Florida Everglades by examining energy balance components (eddy covariance derived latent energy (LE) and sensible heat (H) flux). The study period included several wet and dry seasons and variable water levels, allowing us to gain better mechanistic information about the control of and changes in marsh hydroperiods. The annual length of inundation is ~5 months at the short-hydroperiod site (25°26?16.5?N, 80°35?40.68?W), whereas the long-hydroperiod site (25°33'6.72"N, 80°46'57.36"W) is inundated for ~12 months annually due to differences in elevation and exposure to surface flow. In the Everglades, surface fluxes feed back to wet season precipitation and affect the magnitude of seasonal change in water levels through water loss as LE (evapotranspiration (ET)). At both sites, annual precipitation was higher than ET (1304 versus 1008 at the short-hydroperiod site and 1207 versus 1115 mm yr-1 at the long-hydroperiod site), though there were seasonal differences in the ratio of ET:precipitation. Results also show that energy balance closure was within the range found at other wetland sites (60 to 80%) and was lower when sites were inundated (60 to 70%). Patterns in energy partitioning covaried with hydroperiods and climate, suggesting that shifts in any of these components could disrupt current water and biogeochemical cycles throughout the Everglades region. These results suggest that the complex relationships between hydroperiods, energy exchange, and climate are important for creating conditions sufficient to maintain Everglades ecosystems.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Malone, Sparkle L.; Staudhammer, Christina L.; Loescher, Henry W.; Olivas, Paulo; Oberbauer, Steven F.; Ryan, Michael G.; Schedlbauer, Jessica; Starr, Gregory. 2014. Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades. Journal of Geophysical Research: Biogeosciences. 119(8): 1487-1505.

    Cited

    Google Scholar

    Keywords

    Florida Everglades, subtropical wetlands, surface energy balance, energy partitioning, time series analysis, eddy covariance

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/46830