Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to examine the effects of defoliation and three aspects of how the phenomenon is represented in the model (the spatial distribution of defoliation within tree crowns, potential branchwood drying and model resolution). Our simulations suggest that fire intensity and crowning are reduced with increasing defoliation compared with un-defoliated trees, regardless of within-crown fuel density, but torching is only reduced with decreasing crown fuel density. Agreater surface fire intensity was required to ignite the crown of a defoliated compared with an un-defoliated tree of the same crown base height. The effects of defoliation were somewhat mitigated by canopy fuel heterogeneity and potential branchwood drying, but these effects, as well as computational cell size, were less pronounced than the effect of defoliation itself on fire intensity. Our study suggests that areas heavily defoliated by western spruce budworm may inhibit the spread of crown fires and promote non-lethal surface fires.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Cohn, Gregory M.; Parsons, Russell A.; Heyerdahl, Emily K.; Gavin, Daniel G.; Flower, Aquila. 2014. Simulated western spruce budworm defoliation reduces torching and crowning potential: A sensitivity analysis using a physics-based fire model. International Journal of Wildland Fire. 23: 709-720.


    canopy bulk density, CFD, Computational Fluid Dynamic model, critical surface fire intensity, Douglas-fir, fire behaviour, fuel moisture, surface fire intensity, WFDS, wildland-urban interface fire dynamic simulator

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page