Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Michael D. Bell; James O. Sickman; Andrzej Bytnerowicz; Pamela E. Padgett; Edith B. Allen
    Date: 2014
    Source: Atmospheric Environment. 94: 287-296
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (1.16 MB)


    The sources and oxidation pathways of atmospheric nitric acid (HNO3) can be evaluated using the isotopic signatures of oxygen (O) and nitrogen (N). This study evaluated the ability of Nylasorb nylon filters to passively collect unbiased isotopologues of atmospheric HNO3 under controlled and field conditions. Filters contained in passive samplers were exposed in continuous stirred tank reactors (CSTRs) at high (16 μg/m3) and moderate (8 μg/m3) HNO3 concentrations during 1–4 week deployment times. Filters were concurrently exposed at high and low N deposition sites along a gradient in the Sonoran Desert. Filters deployed in CSTRs at moderate HNO3 concentrations for 1–2 weeks had greater variation of ä18O relative to the 3–4 week deployments, while high concentration samples were consistent across weeks. All deployment means were within 2‰ of the source solution. The δ15N of all weekly samples were within 0.5‰ of the source solution. Thus, when deployed for longer than 3 weeks, Nylasorb filters collected an isotopically unbiased sample of atmospheric HNO3. The initial HNO3 samples at the high deposition field sites had higher δ15N and δ18O values than the low deposition sites, suggesting either two independent sources of HNO3 were mixing or that heavier isotopologues of HNO3 were preferentially lost from the gas phase through physical deposition or equilibrium chemical reactions. Subsequent HNO3 samples were subject to summer monsoon conditions leading to variation of isotopic signatures of N and O following 2-source mixing dynamics. Both sites mixed with a source that dominated during the two discrete precipitation events. The high number of lightning strikes near the samplers during the monsoon events suggested that lightning-created HNO3 was one of the dominant mixing sources with an approximate isotopic signature of 21.6‰ and −0.6‰ for δ18O andδ15N respectively. Two-source mixing models suggest that lightning-created HNO3 made up between 40 and 42% of atmospheric HNO3 at the high deposition sites and 59–63% at the low deposition during the 4 week exposure.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Bell, M.D.; Sickman, J.O.; Bytnerowicz, A.; Padgett, P.E.; Allen, E.B. 2014. Variation in isotopologues of atmospheric nitric acid in passively collected samples along an air pollution gradient in southern California. Atmospheric Environment. 94: 287-296.


    Google Scholar


    Nylasorb nylon filter, Atmospheric deposition, Passive sampler, Nitric acid, δ15N, δ18O, Lightning

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page