Skip to main content
U.S. flag

An official website of the United States government

Variation in isotopologues of atmospheric nitric acid in passively collected samples along an air pollution gradient in southern California


Michael D. Bell
James O. Sickman
Edith B. Allen



Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Pacific Southwest Research Station


Atmospheric Environment. 94: 287-296


The sources and oxidation pathways of atmospheric nitric acid (HNO3) can be evaluated using the isotopic signatures of oxygen (O) and nitrogen (N). This study evaluated the ability of Nylasorb nylon filters to passively collect unbiased isotopologues of atmospheric HNO3 under controlled and field conditions. Filters contained in passive samplers were exposed in continuous stirred tank reactors (CSTRs) at high (16 μg/m3) and moderate (8 μg/m3) HNO3 concentrations during 1–4 week deployment times. Filters were concurrently exposed at high and low N deposition sites along a gradient in the Sonoran Desert. Filters deployed in CSTRs at moderate HNO3 concentrations for 1–2 weeks had greater variation of ä18O relative to the 3–4 week deployments, while high concentration samples were consistent across weeks. All deployment means were within 2‰ of the source solution. The δ15N of all weekly samples were within 0.5‰ of the source solution. Thus, when deployed for longer than 3 weeks, Nylasorb filters collected an isotopically unbiased sample of atmospheric HNO3. The initial HNO3 samples at the high deposition field sites had higher δ15N and δ18O values than the low deposition sites, suggesting either two independent sources of HNO3 were mixing or that heavier isotopologues of HNO3 were preferentially lost from the gas phase through physical deposition or equilibrium chemical reactions. Subsequent HNO3 samples were subject to summer monsoon conditions leading to variation of isotopic signatures of N and O following 2-source mixing dynamics. Both sites mixed with a source that dominated during the two discrete precipitation events. The high number of lightning strikes near the samplers during the monsoon events suggested that lightning-created HNO3 was one of the dominant mixing sources with an approximate isotopic signature of 21.6‰ and −0.6‰ for δ18O andδ15N respectively. Two-source mixing models suggest that lightning-created HNO3 made up between 40 and 42% of atmospheric HNO3 at the high deposition sites and 59–63% at the low deposition during the 4 week exposure.


Bell, M.D.; Sickman, J.O.; Bytnerowicz, A.; Padgett, P.E.; Allen, E.B. 2014. Variation in isotopologues of atmospheric nitric acid in passively collected samples along an air pollution gradient in southern California. Atmospheric Environment. 94: 287-296.


Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.