Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Carl P.J. Mitchell; Randall K. Kolka; Shawn Fraver
    Date: 2012
    Source: Environmental Science & Technology. 46(15): 7963-7970.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (3.85 MB)


    A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical responses to disturbances are generally investigated within a single-disturbance context, with little currently known about the impact of multiple disturbances occurring in rapid succession. In this study we capitalize on a combination of blowdown, salvage logging and fire events in the sub-boreal region of northern Minnesota to assess both the singular and combined effects of these disturbances on forest floor and soil total Hg concentrations and pools. Although none of the disturbance combinations affected Hg in mineral soil, we did observe significant effects on both Hg concentrations and pools in the forest floor. Blowdown increased the mean Hg pool in the forest floor by 0.76 mg Hg -2 (223%). Salvage logging following blowdown created conditions leading to a significantly more severe forest floor burn during wildfire, which significantly enhanced Hg emission. This sequence of combined events resulted in a mean loss of approximately 0.42 mg Hg m-2 (68% of pool) from the forest floor, after conservatively accounting for potential losses via enhanced soil leaching and volatile emissions between the disturbance and sampling dates. Fire alone or blowdown followed by fire did not significantly affect the total Hg concentrations or pools in the forest floor. Overall, unexpected consequences for soil Hg accumulation and by extension, atmospheric Hg emission and risk to aquatic biota, may result when combined impacts are considered in addition to singular forest floor and soil disturbances.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Mitchell, Carl P.J.; Kolka, Randall K.; Fraver, Shawn. 2012. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools. Environmental Science & Technology. 46(15): 7963-7970.


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page