Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Given the low intraspecific chloroplast diversity detected in northern red oak (Quercus rubra L.), more powerful genetic tools are necessary to accurately characterize Q. rubra chloroplast diversity and structure. We report the sequencing, assembly, and annotation of the chloroplast genome of northern red oak via pyrosequencing and a combination of de novo and reference-guided assembly (RGA). Chloroplast DNA from 16 individuals was separated into four MID-tagged pools for a Genome Sequencer 20 quarter-run (Roche Life Sciences, Indianapolis, IN, USA). A four-step assembly method was used to generate the Q. rubra chloroplast consensus sequence: (1) reads were assembled de novo into contigs, (2) de novo contigs were aligned to a reference genome and merged to produce a consensus sequence, (3) the consensus sequence was aligned to the reference sequence and gaps between contigs were filled with reference sequence to generate a "pseudoreference", and (4) reads were mapped to the pseudoreference using RGA to generate the draft chloroplast genome. One hundred percent of the pseudoreference sequence was covered with a minimum coverage of 2x and an average coverage of 43.75x. The 161,304-bp Q. rubra chloroplast genome draft sequence contained 137 genes and one rps19 pseudogene. The sequence was compared to that of Quercus robur and Q. nigra with 951 and 186 insertion/deletion or SNP polymorphisms detected, respectively. A total of 51 intraspecific polymorphisms were detected among four northern red oak individuals. The fully sequenced and annotated Q. rubra chloroplast genome containing locations of interspecific and intraspecific polymorphisms will be essential for studying population differentiation, phylogeography, and evolutionary history of this species as well as meeting management goals such as monitoring reintroduced populations, tracking wood products, and certifying seed lots and forests.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Alexander, Lisa W.; Woeste, Keith E. 2014. Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genetics & Genomes. 10(4): 803-812.


    Google Scholar


    Forest genetics, SNP, Haplotype, Fagaceae

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page