Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Robert R. Pattison; Jeffrey M. Welker
    Date: 2014
    Source: Oecologia
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (0 B)

    Description

    Changes in winter precipitation that include both decreases and increases in winter snow are underway across the Arctic. In this study, we used a 14-year experiment that has increased and decreased winter snow in the moist acidic tussock tundra of northern Alaska to understand impacts of variation in winter snow depth on summer leaf-level ecophysiology of two deciduous shrubs and a graminoid species, including: instantaneous rates of leaf gas exchange, and δ13C, δ15N, and nitrogen (N) concentrations of Betula nana, Salix pulchra, and Eriophorum vaginatum. Leaf-level measurements were complemented by measurements of canopy leaf area index (LAI) and depth of thaw. Reductions in snow lowered summer leaf photosynthesis, conductance, and transpiration rates by up to 40 % compared to ambient and deep snow conditions for Eriophorum vaginatum, and reduced Salix pulchra conductance and transpiration by up to 49 %. In contrast, Betula nana exhibited no changes in leaf gas exchange in response to lower or deeper snow. Canopy LAI increased with added snow, while reduced winter snow resulted in lower growing season soil temperatures and reduced thaw depths. Our findings indicate that the spatial and temporal variability of future snow depth will have individualistic consequences for leaf-level C fixation and water flux by tundra species, and that these responses will be manifested over the longerterm by changes in canopy traits, depth of thaw, soil C and N processes, and trace gas (CO2 and H2O) exchanges between the tundra and the atmosphere.

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Pattison, Robert R.; Welker, Jeffrey M. 2014. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, northern Alaska. Oecologia. 174: 339-350.

    Cited

    Google Scholar

    Keywords

    Photosynthesis · Leaf area index · Thaw depth · δ13C · δ15N

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/47511