Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen
    Date: 2015
    Source: Journal of Hydrology. doi: 10.1016/j.jhydrol.2015.01.014.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (1.82 MB)

    Description

    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region’s agricultural, urban, and wildlife needs, our understanding of the variability of Bear River’s stream flow derives entirely from the short instrumental record (1943–2010). Here we present a 1200-year calibrated and verified tree-ring reconstruction of stream flow for the Bear River that explains 67% of the variance of the instrumental record over the period from 1943 to 2010. Furthermore, we developed this reconstruction from a species that is not typically used for dendroclimatology, Utah juniper (Juniperus osteosperma). We identify highly significant periodicity in our reconstruction at quasi-decadal (7–8 year), multi-decadal (30 year), and centennial (>50 years) scales. The latter half of the 20th century was found to be the 2nd wettest (∼40-year) period of the past 1200 years, while the first half of the 20th century marked the 4th driest period. The most severe period of reduced stream flow occurred during the Medieval Warm Period (ca. mid-1200s CE) and persisted for ∼70 years. Upper-level circulation anomalies suggest that atmospheric teleconnections originating in the western tropical Pacific are responsible for the delivery of precipitation to the Bear River watershed during the October–December (OND) season of the previous year. The Bear River flow was compared to recent reconstructions of the other tributaries to the Great Salt Lake (GSL) and the GSL level. Implications for water management could be drawn from the observation that the latter half of the 20th century was the 2nd wettest in 1200 years, and that management for future water supply should take into account the stream flow variability over the past millennium.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    DeRose, R. J.; Bekker, M. F.; Wang, S.-Y.; Buckley, B. M.; Kjelgren, R. K.; Bardsley, T.; Rittenour, T. M.; Allen, E. B. 2015. A millennium-length reconstruction of Bear River stream flow, Utah. Journal of Hydrology. doi: 10.1016/j.jhydrol.2015.01.014.

    Cited

    Google Scholar

    Keywords

    dendrohydrology, drought, Medieval Warm Period, mega-droughts, Pacific Ocean teleconnection, water management

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page