Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Disturbance of forest ecosystems, such as that caused by harvesting or acid deposition, is thought to alter the ability of the ecosystem to retain nutrients. Although many watershed studies have suggested depletion of available calcium (Ca) pools, interpretation of ecosystem Ca mass balance has been limited by the difficulty in obtaining mineral weathering flux estimates. While many studies have suggested that weathering flux is insufficient to maintain available soil pools, measurements of concomitant changes in available soil pools are rare. Here, we critically examined application of the Ca:Na ratio method in interpreting the long-term Ca budget of six northern hardwood watershed ecosystems at the Hubbard Brook Experimental Forest, Woodstock, New Hampshire, USA. Storage of sodium (Na) in biomass and secondary minerals and on cation exchange sites was low enough so that net ecosystem Na loss was essentially equivalent to mineral weathering flux. Mineral chemistry and mass balance considerations constrained the Ca:Na ratio of weathering products to a sufficiently narrow range that spatial and temporal changes in the ecosystem Ca:Na ratio could be interpreted as changes in contribution of available Ca pools to ecosystem loss. Depletion of available Ca pools was greater in the three experimentally manipulated watersheds with aggrading biomass compared to three reference watersheds with relatively mature forest conditions. Although accelerated loss of Ca in the first few years following disturbance has been documented by prior studies, this study suggests that excess Ca loss continues for at least three decades after treatment, with no evident trend toward the conditions shown in the reference watershed. It is not likely that changes in previously quantified Ca pools account for this sustained loss, suggesting that a previously unstudied Ca pool or release mechanism may be important in ecosystem response to disturbance. Possible sources include Ca oxalate, which is known to accumulate in forest soils, but has not been considered in the context of an ecosystem mass balance.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Bailey, Scott W.; Buso, Donald C.; Likens, Gene E. 2003. Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecology. 84(2): 471-484.


    calcium cycle, Ca:Na ratio, disturbance, forest ecosystems, mineral weathering, nutrient cycling, sodium mass balance

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page