Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ayron M. Strauch; Richard A. MacKenzieChristian P. Giardina; Gregory L. Bruland
    Date: 2015
    Source: Journal of Hydrology. 523: 160-169
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (1.18 MB)

    Related Research Highlights


    PSW-2015-218
    Impacts of Cimate Change on Pacific Island Streams

    Description

    Rising atmospheric CO2 and resulting warming are expected to impact freshwater resources in the tropics, but few studies have documented how natural stream flow regimes in tropical watersheds will respond to changing rainfall patterns. To address this data gap, we utilized a space-for-time substitution across a naturally occurring and highly constrained (i.e., similar geomorphic, abiotic, and biotic features) model hydrological system encompassing a 3000 mm mean annual rainfall (MAR) gradient on Hawai'i Island. We monitored stream flow at 15 min intervals in 12 streams across these watersheds for two years (one normal and one dry) and calculated flow metrics describing the flow magnitude, flow variability (e.g., flow flashiness, zero flow days), and flow stability (e.g., deviations from Q90, daily flow range). A decrease in watershed MAR was associated with increased relative rainfall intensity, a greater number of days with zero rainfall resulting in more days with zero flow, and a decrease in Q90:Q50. Flow yield metrics increased with increasing MAR and correlations with MAR were generally stronger in the normal rainfall year compared to the dry year, suggesting that stream flow metrics are less predictable in drier conditions. Compared to the normal rainfall year, during the dry year, Q50 declined and the number of zero flow days increased, while coefficient of variation increased in most streams despite a decrease in stream flashiness due to fewer high flow events. This suggests that if MAR changes, stream flow regimes in tropical watersheds will also shift, with implications for water supply to downstream users and in stream habitat quality for aquatic organisms.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Strauch, A.M.; MacKenzie, R.A.; Giardina, C.P.; Bruland, G.L. 2015. Climate driven changes to rainfall and streamflow patterns in a model tropical island hydrological system. Journal of Hydrology. 523: 160-169.

    Cited

    Google Scholar

    Keywords

    Hawai'i, Flow regime, Freshwater ecosystems, Tropical streams, Flash floods, Climate change

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/47736