Skip to main content
U.S. flag

An official website of the United States government

Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system

Author(s):

Robert A. Riggs
Norm Cimon
Rachel Cook
John Cook
Timothy DelCurto
Donald Justice
David Powell
Martin Vavra
Bridgett Naylor

Year:

2015

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station

Source:

Ecological Modelling. 296: 57-78.

Description

Landscape fire succession models (LFSMs) predict spatially-explicit interactions between vegetation succession and disturbance, but these models have yet to fully integrate ungulate herbivory as a driver of their processes. We modified a complex LFSM, FireBGCv2, to include a multi-species herbivory module, GrazeBGC. The system is novel in that it explicitly accommodates multiple herbivore populations, inter- and intra-specific spatial forcing of their forage demands, and site-specific dietary selectivity to interactively modify biomass, fuels and fire behavior across a landscape and over time. A factorial experiment with five grazing regimes, three climates and two fire-management scenarios generated interactive influences on undergrowth biomass (shrub, herb, total), surface-fire (fire-line intensity; flame length; scorch height; soil heat; CO, CO2, CH4, and PM2.5 emissions), and the landscape's fire-return interval. Herbivory’s effects increased with biophysical site potential and herbivore forage demand, but its effects were also contingent on climate and fire-suppression. Multi-species grazing modified biomass and fire within stands and biophysical sites, but regimes involving only wildlife or livestock were less effectual. Multi-species herbivory affected the landscape's fire-return interval, but otherwise it did not "scale up" to significantly modify total landscape respiration, primary production, carbon, or the total area burned by individual fires. As modeled here, climate change and the effectiveness of future fire suppression exerted stronger effects on landscape metabolism and carbon than did herbivory.

Citation

Riggs, Robert A.; Keane, Robert E.; Cimon, Norm; Cook, Rachel; Holsinger, Lisa; Cook, John; DelCurto, Timothy; Baggett, L.Scott; Justice, Donald; Powell, David; Vavra, Martin; Naylor, Bridgett. 2015. Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system. Ecological Modelling. 296: 57-78.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/47844