Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Walker D.A.; Romanovsky V.E.; Ping C.L.; Michaelson G.J.; Daanen R.P.; Shur Y.; Peterson R.A.; Krantz W.B.; Raynolds M.K.; William GouldGrizelle Gonzalez; Nicolsky D.J.; Vonlanthen C.M.; Kade A.N.; Kuss P.; Kelley A.M.; Munger C.A.; Tarnocai C.T.; Matveyeva N.V.; Daniels F.J.A.
    Date: 2008
    Source: Journal of Geophysical Research 113, G03S01 1-17
    Publication Series: Scientific Journal (JRNL)
    Station: International Institute of Tropical Forestry
    PDF: Download Publication  (9.09 MB)


    Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The “Biocomplexity of Patterned Ground Ecosystems” project examined patterned-ground features (PGFs) in all five Arctic bioclimate subzones along an 1800-km trans-Arctic temperature gradient in northern Alaska and northwestern Canada. This paper provides an overview of the transect to illustrate the trends in climate, PGFs, vegetation, n-factors, soils, active-layer depth, and frost heave along the climate gradient. We emphasize the thermal effects of the vegetation and snow on the heat and water fluxes within patterned-ground systems. Four new modeling approaches build on the theme that vegetation controls microscale soil temperature differences between the centers and margins of the PGFs, and these in turn drive the movement of water, affect the formation of aggradation ice, promote differential soil heave, and regulate a host of system properties that affect the ability of plants to colonize the centers of these features. We conclude with an examination of the possible effects of a climate warming on patterned-ground ecosystems.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Walker, D.A., Epstein, H. E., Romanovsky, V. E., Ping, C. L., Michaelson, G. J., Daanen, R. P., Shur, Y., Peterson, R. A., Krantz, W. B., Raynolds, M. K., Gould, W.A., G. González, Nicolsky, D. J., Vonlanthen, C. M., Kade, A. N., Kuss, P., Kelley, A. M., Munger, C. A., Tarnocai, C. T., Matveyeva, N. V., Daniëls, F. J. A.. 2008. Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect. Journal of Geophysical Research 113, G03S01 1-17. Doi:10.1019/2007JG000504


    Google Scholar


    permafrost, thermal regime, tundra, soils, impacts of climate change

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page