Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Taehee Hwang; Lawrence E. Band; T. C. Hales; Chelcy F. MiniatJames M. Vose; Paul V. Bolstad; Brian Miles; Katie Price
    Date: 2015
    Source: Journal of Geophysical Research: Biogeosciences. 18 p.
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (5.19 MB)

    Description

    The spatial distribution of shallow landslides in steep forested mountains is strongly controlled by aboveground and belowground biomass, including the distribution of root cohesion. While remote sensing of aboveground canopy properties is relatively advanced, estimating the spatial distribution of root cohesion at the forest landscape scale remains challenging. We utilize canopy height information estimated using lidar (light detecting and ranging) technology as a tool to produce a spatially distributed root cohesion model for landslide hazard prediction. We characterize spatial patterns of total belowground biomass based on the empirically derived allometric relationship developed from soil pit measurements in the Coweeta Hydrologic Laboratory, North Carolina. The vertical distribution of roots and tensile strength were sampled at soil pits allowing us to directly relate canopy height to root cohesion and use this model within a distributed ecohydrological modeling framework, providing transient estimates of runoff, subsurface flow, soil moisture, and pore pressures. We tested our model in mountainous southern Appalachian catchments that experienced a number of landslides during the 2004 hurricane season. Slope stability estimates under the assumption of spatially uniform root cohesion significantly underpredicted both the total number of landslides and the number of “false positives,” unfailed areas of the landscape that were predicted to fail. When we incorporate spatially distributed root cohesion, the accuracy of the slope stability forecast improves dramatically. With the growing availability of lidar data that can be used to infer belowground information, these methods may provide a wider utility for improving landslide hazard prediction and forecasting

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Hwang, Taehee; Band, Lawrence E.; Hales, T. C.; Miniat, Chelcy F.; Vose, James M.; Bolstad, Paul V.; Miles, Brian; Price, Katie. 2015. Simulating vegetation controls on hurricane-induced shallow landslides with a distributed ecohydrological model. Journal of Geophysical Research: Biogeosciences. 18 p.

    Cited

    Google Scholar

    Keywords

    Lidar remote sensing is effective estimating spatial root cohesion patterns Belowground vegetation information

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/47923