Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Catalina Segura; Peter CaldwellGe SunSteve McNulty; Yang Zhang
    Date: 2014
    Source: Hydrological Processes -John Wiley & Son
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (4.31 MB)

    Description

    Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating Streamflow database, describes the linear relationship between monthly mean air temperature (ta) and ts. Multiple linear regression models are used to predict the slope (m) and intercept (b) of the ta–ts linear relation as a function of climatic, hydrologic and land cover characteristics. Model performance to predict ts resulted in a mean Nash–Sutcliffe efficiency coefficient of 0.78 across all sites. Application of the model to predict ts at additional 89 nonreference sites with a higher human alteration yielded a mean Nash–Sutcliffe value of 0.45. We also analysed seasonal thermal sensitivity (m) and found strong hysteresis in the ta–ts relation. Drainage area exerts a strong control on m in all seasons, whereas the cooling effect of groundwater was only evident for the spring and fall seasons. However, groundwater contributions are negatively related to mean ts in all seasons. Finally, we found that elevation and mean basin slope are negatively related to mean ts in all seasons, indicating that steep basins tend to stay cooler because of shorter residence times to gain heat from their surroundings. This model can potentially be used to predict climate change impacts on ts across the USA.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Segura, Catalina; Caldwell, Peter; Sun, Ge; McNulty, Steve; Zhang, Yang. 2014. A model to predict stream water temperature across the conterminous USA. Hydrological Process - John Wiley & Son 18 p.

    Cited

    Google Scholar

    Keywords

    stream water temperature, water quality modeling, thermal sensitivity

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/47968