Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Carlos A. Gonzalez-Beneke; Salvador Gezan; Tmothy J. Albaugh; H. Lee Allen; Harold E. Burkhart; Thomas R. Fox; Eric J. Jokela; Christopher Maier; Timothy A. Martin; Rafael A. Rubilar; Lisa J. Samuelson
    Date: 2014
    Source: Forest Ecology and Management 334:254-276
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (731.37 KB)

    Description

    There is an increasing interest in estimating biomass for loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm. var. elliottii), two of the most ecologically and commercially important tree species in North America. The majority of the available individual-tree allometric models are local, relying on stem diameter outside bark at breast height (dbh) and, in some cases, total tree height (H): only a few include stand age or other covariates. Using a large dataset collected from five forestry research institutions in the southeastern U.S., consisting of biomass measurements from 744 loblolly pine and 259 slash pine trees, we developed a set of individual-tree equations to predict total tree above-stump biomass, stem biomass outside bark, live branch biomass and live foliage biomass, as well as functions to determine stem bark fraction in order to calculate stem wood biomass inside bark and stem bark biomass from stem biomass outside bark determinations. Local and general models are presented for each tree attribute. Local models included dbh or dbh and H as predicting variables. General models included stand-level variables such as age, quadratic mean diameter, basal area and stand density. This paper reports the first set of local and general allometric equations reported for loblolly and slash pine trees. The models can be applied to trees growing over a large geographical area and across a wide range of ages and stand characteristics. These sets of equations provide a valuable alternative to available models and are intended as a tool to support present and future management decisions for the species, allowing for a variety of ecological, silvicultural and economic applications, as regional assessments of stand biomass or estimating ecosystem C balance.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Gonzalez-Benecke, Carlos A., Gezan, Salvador A., Albaugh, Timothy J., Allen, H. Lee, Burkhart, Harold E., Fox, Thomas R., Jokela, Eric J., Maier, Chris A., Martin, Timothy A., Rubilar, Rafael A., Samuelson,Lisa J. 2014. Local and general above-stump biomass functions for loblolly pine and slash pine trees. Forest Ecology and Management, 334:254-276 23 p.

    Cited

    Google Scholar

    Keywords

    Pinus taeda, Pinus elliottii, Above ground allometry, Carbon stock modeling

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/48075