Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Closing the wildland fire heat budget involves characterising the heat source and energy dissipation across the range of variability in fuels and fire behaviour. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. In this paper, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption and the behaviour of spreading flame fronts. Experiments were conducted in 8 × 8-m outdoor plots using preconditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of ~18.5m2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density over a range of fuel consumption between 0.15 and 3.25 kgm-2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection and soil heating across a range of fuels.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Kremens, R.L.; Dickinson, M.B.; Bova, A.S. 2012. Radiant flux density, energy density, and fuel consumption in mixed-oak forest surface fires. International Journal of Wildland Fire. 21: 722-730.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/48139