Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Freeze-dried cellulose nanocrystals (CNCs) were dispersed in the thermoplastic polyurethane [Pellethane 2363-55D (P55D)] by a solvent casting method to fabricate CNC-reinforced nanocomposites. This study demonstrated that the addition of small amounts (1–5 wt %) of CNCs to P55D increased the thermal degradation temperature while maintaining a similar stiffness, strength, and elongation of the neat P55D. CNC additions to P55D did not alter the glass-transition temperature, but the onset decomposition temperature was shifted from 286 to 327C when 1 wt % CNCs was dispersed in the matrix. The higher onset decomposition temperature was attributed to the formation of hydrogen bonds between the hydroxyl groups on the CNC surface and urethane groups in the hard block of P55D. The ultimate tensile strength and strain to failure (εf) of the nanocomposites were minimally affected by additions up to 5 wt % CNCs, whereas the elastic modulus was increased by about 70%. The observation that εf was unchanged with the addition of up to 5 wt % CNCs suggested that the flow/sliding of the hard blocks and chains were not hindered by the presence of the CNCs during plastic deformation. The ramifications of this study was that CNC additions resulted in wider processing temperatures of P55D for various biomedical devices while maintaining a similar stiffness, strength, and elongation.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Liu, Jen-Chieh; Martin, Darren J.; Moon, Robert J.; Youngblood, Jeffrey P. 2015. Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. Journal of Applied Polymer Science. 132 (22): 8 p.


    Google Scholar


    biomedical applications, cellulose and other wood products, composites, polyurethanes, thermoplastics

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page