Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Forest cover has increased in mountainous areas of Europe over the past decades because of the abandonment of agricultural areas (land-use change). For this reason, understanding how land-use change affects carbon (C) source-sink strength is of great importance. However, most studies have assessed mountainous systems C stocks, and less is known about C turnover rates, especially of “fresh” organic material (OM). We studied the decomposition of wood stakes of trembling aspen (Populus tremuloides Michx.) and loblolly pine (Pinus taeda L.) placed on the litter layer and in the mineral soil of five ecosystem types (pastures and forests) - representing the successional development after land abandonment in the eastern Swiss Alps - for 6 years. Wood stake decomposition rates were generally highest in pastures and lowest in early successional forests. Aspen stakes decomposed more rapidly than pine stakes, especially in the mineral soil. Soil temperature (and to a smaller extent soil phosphorus (P) concentration) best explained the differences in decomposition among the ecosystem types. Initial wood decay is temperature-sensitive, and therefore would likely increase under future climate change scenarios.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Risch, Anita C.; Jurgensen, Martin F.; Page-Dumroese, Deborah S.; Schutz, Martin. 2013. Initial turnover rates of two standard wood substrates following land-use change in subalpine ecosystems in the Swiss Alps. Canadian Journal Forest Research. 43: 901-910.


    Google Scholar


    forest cover, land-use change, carbon (C), C stocks, organic material (OM), decomposition, climate change

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page