Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; William H. McDowell; Subhash C. Minocha
    Date: 2015
    Source: Tree Physiology
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (2.0 MB)

    Description

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH4NO3 ha-1 year-1) and high N (HN, 150 kg NH4NO3 ha-1 year-1) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH4NO3 ha-1 year-1. However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites with other measures of forest functions suggests that the metabolite analyses are useful for long-term monitoring of the health of forest trees.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Minocha, Rakesh; Turlapati, Swathi A.; Long, Stephanie; McDowell, William H.; Minocha, Subhash C. 2015. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA. Tree Physiology, Vol. 35(8): 894-909. doi:10.1093/treephys/tpv044.

    Cited

    Google Scholar

    Keywords

    biochemical responses, defense responses, nitrogen deposition

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/48838