Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mark J. Statham; James Murdoch; Jan Janecka; Keith B. Aubry; Ceiridwen J. Edwards; Carl D. Soulsbury; Oliver Berry; Zhenghuan Wang; David Harrison; Malcolm Pearch; Louise Tomsett; Judith Chupasko; Benjamin N. Sacks
    Date: 2014
    Source: Molecular Ecology. 23: 4813-4830.
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (0 B)

    Description

    Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world’s most widely distributed wild terrestrial carnivore. Analyses of 697 bp of mitochondrial sequence in ~1000 individuals suggested an ancient Middle Eastern origin for all extant red foxes and a 400 kya (SD = 139 kya) origin of the primary North American (Nearctic) clade. Demographic analyses indicated a major expansion in Eurasia during the last glaciation (~50 kya), coinciding with a previously described secondary transfer of a single matriline (Holarctic) to North America. In contrast, North American matrilines (including the transferred portion of Holarctic clade) exhibited no signatures of expansion until the end of the Pleistocene (~12 kya). Analyses of 11 autosomal loci from a subset of foxes supported the colonization time frame suggested by mtDNA (and the fossil record) but, in contrast, reflected no detectable secondary transfer, resulting in the most fundamental genomic division of red foxes at the Bering Strait. Endemic continental Y-chromosome clades further supported this pattern. Thus, intercontinental genomic exchange was overall very limited, consistent with long-term reproductive isolation since the initial colonization of North America. Based on continental divergence times in other carnivoran species pairs, our findings support a model of peripatric speciation and are consistent with the previous classification of the North American red fox as a distinct species, V. fulva

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Statham, Mark J.; Murdoch, James; Janecka, Jan; Aubry, Keith B.; Edwards, Ceiridwen J.; Soulsbury, Carl D.; Berry, Oliver; Wang, Zhenghuan; Harrison, David; Pearch, Malcolm; Tomsett, Louise; Chupasko, Judith; Sacks, Benjamin N. 2014. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Molecular Ecology. 23: 4813-4830.

    Cited

    Google Scholar

    Keywords

    global phylogeography, mitochondrial DNA, nuclear DNA, Pleistocene, speciation, Vulpes fulva, Vulpes vulpes, Y-chromosome

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/48859