Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): T. SchroederG. MoisenK. Schleeweis
    Date: 2014
    Source: The International Forestry Review. 16(5): 424.
    Publication Series: Abstract
    Station: Rocky Mountain Research Station
    PDF: View PDF  (69.41 KB)

    Description

    Understanding and modeling land cover and land use change is evolving into a foundational element of climate, environmental, and sustainability science. Land cover and land use data are core to applications such as carbon accounting, greenhouse gas emissions reporting, biomass and bioenergy assessments, hydrologic function assessments, fire and fuels planning and management, and forest and rangeland health assessments. Remote sensing-based monitoring efforts like the North American Forest Dynamics (NAFD) project, and the newly launched Landscape Change Monitoring System (LCMS), will provide land cover and land use change data on all U.S. lands for the longest possible historical period. Empirical models driving disturbance and causal maps rely on large quantities of high quality data. Many decisions need to be made about the size, shape, quantity, quality, and other details about the training plots themselves, i.e., the response design. Here, the authors explored best practices for collecting training data for these empirical models on 10 pilot scenes in the United States. Alternative designs were evaluated in terms of their costs and benefits for national mapping applications.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Schroeder, T.; Moisen, G.; Schleeweis, K. 2014. Testing alternative response designs for training forest disturbance and attribution models. The International Forestry Review. 16(5): 424.

    Keywords

    forest disturbance, attribution models, land cover, land use, mapping applications

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page