Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP) models with a model averaging approach. We then predicted human- and lightning-caused wildfire occurrence over the 2010-2100 period in the Lake Tahoe Basin, a forested watershed in the western US with an extensive wildland-urban interface. The purpose of our research was threefold, including (1) to quantify the influence of biophysical and anthropogenic explanatory variables on spatial patterns of wildfire occurrence, (2) to model current and future spatial distribution of wildfire occurrence under two carbon emission scenarios (A2 and B1), and (3) to assess prediction uncertainty due to model selection. We found that climate variables exerted stronger influences on lightningcaused fires, with climatic water deficit the most important climatic variable for both human- and lightning-caused fires. The recent spatial distribution of wildfire hotspots was mainly constrained by anthropogenic factors because most wildfires were human-caused. The future distribution of hotspots (i.e. places with high fire occurrence density), however, was predicted to shift to higher elevations and ridge tops due to a more rapid increase of lightning-caused fires. Landscapescale mean fire occurrence density, averaged from our top SPP models with similar empirical support, was predicted to increase by 210% and 70% of the current level under the A2 and B1 scenarios. However, individual top SPP models could lead to substantially different predictions including a small decrease, a moderate increase, and a very large increase, demonstrating the critical need to account for model uncertainty.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Yang, Jian; Weisberg, Peter J.; Dilts, Thomas E.; Loudermilk, E. Louise; Scheller, Robert M.; Stanton, Alison; Skinner, Carl. 2015. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA. International Journal of Wildland Fire. 24(3): 380-390. 11p.

    Cited

    Google Scholar

    Keywords

    climatic water deficit, model uncertainty, multi-model inference, predictive modeling, spatial point process

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/49133