Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): A. Noormets; D. Epron; J.C. Domec; S.G. McNulty; T. Fox; G. Sun; J.S. King
    Date: 2015
    Source: Forest Ecology and Management 355: 124-140
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (490.72 KB)

    Description

    With an increasing fraction of the world’s forests being intensively managed for meeting humanity’s need for wood, fiber and ecosystem services, quantitative understanding of the functional changes in these ecosystems in comparison with natural forests is needed. In particular, the role of managed forests as long-term carbon (C) sinks and for mitigating climate change require a detailed assessment of their carbon cycle on different temporal scales. In the current review we assess available data on the structure and function of the world’s forests, explore the main differences in the C exchange between managed and unmanaged stands, and explore potential physiological mechanisms behind both observed and expected changes. Two global databases that include classification for management indicate that managed forests are about 50 years younger, include 25% more coniferous stands, and have about 50% lower C stocks than unmanaged forests. The gross primary productivity (GPP) and total net primary productivity (NPP) are the similar, but relatively more of the assimilated carbon is allocated to aboveground pools in managed than in unmanaged forests, whereas allocation to fine roots and rhizosymbionts is lower. This shift in allocation patterns is promoted by increasing plant size, and by increased nutrient availability. Long-term carbon sequestration potential in soils is assessed through the ratio of heterotrophic respiration to total detritus production, which indicates that (i) the forest soils may be losing more carbon on an annual basis than they regain in detritus, and (ii) the deficit appears to be greater in managed forests. While climate change and management factors (esp. fertilization) both contribute to greater carbon accumulation potential in the soil, the harvest-related increase in decomposition affects the C budget over the entire harvest cycle. Although the findings do not preclude the use of forests for climate mitigation, maximizing merchantable productivity may have significant carbon costs for the soil pool. We conclude that optimal management strategies for maximizing multiple benefits from ecosystem services require better understanding of the dynamics of belowground allocation, carbohydrate availability, heterotrophic respiration, and carbon stabilization in the soil.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Noormets, A.; Epron, D.; Domec, J.C.; McNulty, S.G.; Fox, T.; Sun, G.; King, J.S. 2015. Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management. 355: 124-140.17 p. http://dx.doi.org/10.1016/j.foreco.2015.05.019

    Cited

    Google Scholar

    Keywords

    Belowground allocation, Carbon management, Harvest disturbance, Fertilization, Soil carbon sequestration, Trade-offs

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/49335