Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Wangxia Wang; Ronald C. SaboMichael D. MozuchPhil KerstenJ. Y. Zhu; Yongcan Jin
    Date: 2015
    Source: Journal of Polymers and the Environment
    Publication Series: Scientific Journal (JRNL)
    Station: Forest Products Laboratory
    PDF: View PDF  (1.57 MB)

    Description

    A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number of microfluidization passes. Physical and mechanical properties of CNF films were characterized. Optical opacity of CNF films from FR (10 mg/g) at 40 passes through the microfluidizer can be as low as 3.7 %, compared with 18.2 % from untreated BEP at the same number of passes. CNF films exhibited similar thermal stability with untreated BEP. Highest specific modulus of CNF films was also obtained from FR (10 mg/g), reaching 56 MNm/kg, approximately 271 % of the CNF films from untreated BEP at 40 passes through the microfluidizer. CNF film from Ph-GH5 (1 mg/g) at 40 passes provided the highest specific maximum tensile strength at 120 kNm/kg.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Wang, Wangxia; Sabo, Ronald C.; Mozuch, Michael D.; Kersten, Phil; Zhu, J. Y.; Jin, Yongcan. 2015. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization. Journal of Polymers and the Environment.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/49390