Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Robert E. Keane; Jason M. Herynk; Chris ToneyShawn P. UrbanskiDuncan C. LutesRoger D. Ottmar
    Date: 2015
    Source: In: Keane, Robert E.; Jolly, Matt; Parsons, Russell; Riley, Karin. Proceedings of the large wildland fires conference; May 19-23, 2014; Missoula, MT. Proc. RMRS-P-73. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 128-140.
    Publication Series: Proceedings (P)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (608.0 KB)


    Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel estimates (n = 13,138) to create a new fuel classification called Fuel Type Groups (FTGs) from FIA forest type groups, and then keyed an FLM, FCCS, and FTG class to each FIA plot based on fuel loadings and stand conditions. We then compared FIA sampled loadings to the keyed class loading values for four surface fuel components (duff, litter, fine woody debris, coarse woody debris) and to mapped FLM, FCCS, and FTG class loading values from spatial fuel products. We found poor performances (R2<0.30) for most fuel component loadings in all three classifications that, in turn, contributed to poor mapping accuracies. The main reason for the poor performances is the high variability of the four fuel component loadings within classification categories and the inherent scale of this variability does not seem to match the FIA measurement scale or LANDFIRE mapping scale.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Goeking, Sara A.; Izlar, Deborah Kay.; Edwards, Thomas C. 2018. A landscape-level assessment of whitebark pine regeneration in the Rocky Mountains, USA. Forest Science. doi: 10.1093/forsci/fxy029.


    fire ecology, fire behavior, smoke management, fire management, social and political consequences

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page