Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): W. K. Dodds; S. M. Collins; S. K. Hamilton; J. L. Tank; S. Johnson; J. R. Webster; K. S. Simon; M. R. Whiles; H. M. Rantala; W. H. McDowell; S. D. Peterson; T. Riis; C. L. Crenshaw; S. A. Thomas; P. B. Kristensen; B. M. Cheever; A. S. Flecker; N. A. Griffiths; T. Crowl; E. J. Rosi-Marshall; R. El-Sabaawi; E. Martí
    Date: 2014
    Source: Ecology. 95(10): 2757-2767.
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (1.7 MB)


    Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Isotope tracer studies, combined with modeling and food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers. Food web studies that use putative food samples composed of actively cycling (more readily assimilable) and refractory (less assimilable) N fractions may draw erroneous conclusions about diets, N turnover, and trophic linkages of consumers. By extension, food web studies using stoichiometric or natural abundance approaches that rely on an accurate description of food-source composition could result in errors when an actively cycling pool that is only a fraction of the N pool in sampled food resources is not accounted for.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Dodds, W.K.; Collins, S.M.; Hamilton, S.K.; Tank, J.L.; Johnson, S.; Webster, J.R.; Simon, K.S.; Whiles, M.R.; Rantala, H.M.; McDowell, W.H.; Peterson, S.D.; Riis, T.; Crenshaw, C.L.; Thomas, S.A.; Kristensen, P.B.; Cheever, B.M.; Flecker, A.S.; Griffiths, N.A.; Crowl, T.; Rosi-Marshall, E. J.; El-Sabaawi, R.; Martí, E. 2014. You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies. Ecology. 95(10): 2757-2767.


    Google Scholar


    15N, consumer, food resources, food web, label mismatch, nitrogen cycling, stable isotope tracer addition.

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page