Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Forest inventory and planning decisions are frequently informed by LiDAR data. Repeated LiDAR acquisitions offer an opportunity to update forest inventories and potentially improve forest inventory estimates through time. We leveraged repeated LiDAR and ground measures for a study area in northern Idaho, U.S.A., to predict (via imputation) - across both space and time-four forest inventory attributes: aboveground carbon (AGC), basal area (BA), stand density index (SDI), and total stem volume (Vol). Models were independently developed from 2003 and 2009 LiDAR datasets to spatially predict response variables at both times. Annual rates of change were calculated by comparing response variables between the two collections. Additionally, a pooled model was built by combining reference observations from both years to test if imputation can be performed across measurement dates. The R2 values for the pooled model were 0.87, 0.90, 0.89, and 0.87 for AGC, BA, SDI, and Vol, respectively. Mapping response variables at the landscape level demonstrates that the relationship between field data and LiDAR metrics holds true even though the data were collected in different years. Pooling data across time increases the number of reference observations available to resource managers and may ultimately improve inventory predictions.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Fekety, Patrick A.; Falkowski, Michael J.; Hudak, Andrew T. 2015. Temporal transferability of LiDAR-based imputation of forest structure attributes. Canadian Journal of Forest Research. 45: 422-435.

    Cited

    Google Scholar

    Keywords

    repeated LiDAR acquisitions, imputation, forest inventory, aboveground carbon, change detection

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page