Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Anantha M. Prasad
    Date: 2015
    Source: Ecology and Evolution. doi: 10.1002/ece3.1752. 16 p.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (1.85 MB)

    Description

    I test for macroscale intraspecific variation of abundance, mortality, and regeneration of four eastern US tree species (Tsuga canadensis, Betula lenta, Liriodendron tulipifera, and Quercus prinus) by splitting them into three climatic zones based on plant hardiness zones (PHZs). The primary goals of the analysis are to assess the differences in environmental heterogeneity and demographic responses among climatic zones, map regional species groups based on decision tree rules, and evaluate univariate and multivariate patterns of species demography with respect to environmental variables. I use the Forest Inventory Analysis (FIA) data to derive abundance, mortality, and regeneration indices and split the range into three climatic zones based on USDA PHZs: (1) cold adapted, leading region; (2) middle, well-adapted region; and (3) warm adapted, trailing region. I employ decision tree ensemble methods to assess the importance of environmental predictors on the abundance of the species between the cold and warm zones and map zonal variations in species groups. Multivariate regression trees are used to simultaneously explore abundance, mortality, and regeneration in tandem to assess species vulnerability. Analyses point to the relative importance of climate in the warm adapted, trailing zone (especially moisture) compared to the cold adapted, leading zone. Higher mortality and lower regeneration patterns in the warm trailing zone point to its vulnerability to growing season temperature and precipitation changes that could figure more prominently in the future. This study highlights the need to account for intraspecific variation of demography in order to understand environmental heterogeneity and differential adaptation. It provides a methodology for assessing the vulnerability of tree species by delineating climatic zones based on easily available PHZ data, and FIA derived abundance, mortality, and regeneration indices as a proxy for overall growth and fitness. Based on decision tree rules, ecologically meaningful variations in species abundance among the climatic zones can be related to environmental variability and mapped.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Prasad, Anantha M. 2015. Macroscale intraspecific variation and environmental heterogeneity: analysis of cold and warm zone abundance, mortality, and regeneration distributions of four eastern US tree species. Ecology and Evolution. doi: 10.1002/ece3.1752. 16 p.

    Cited

    Google Scholar

    Keywords

    Climate change, climatic zones, decision-tree-based ensemble methods, eco-evolutionary processes, Forest Inventory Analysis, intraspecific variation, local adaptation, plant hardiness zones

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page