Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Without large scale disturbances to alter forest structure and open the canopy, historically oak-dominated forests of the central and Appalachian hardwood regions of eastern North America are shifting to dominance by shade-tolerant, ‘mesophytic’ species. In response, prescribed fire is applied with increasing frequency and spatial extent to decrease non-oak species and promote dominance of oak species. However, relatively few studies have examined impacts of repeated fire to forest structure and tree vigor across multiple years and varied terrain. In this study, we examined tree vigor, tree mortality, and stand structure in response to different burn treatments: Frequent (burned 4 times in eight years), Less Frequent (burned 2 times in eight years), and Fire-Excluded. We hypothesized that fire-driven decreases in stem density and basal area would be greatest for small size classes, especially of shade-tolerant species on drier landscape positions, and would increase with burn frequency and fire temperature. We expected trees surviving fire to exhibit increased crown vigor over time since fire. Prescribed fire effects depended on tree size-class and landscape position. About 60% of surviving midstory trees (10–20 cm diameter at breast height (DBH)) and 25% of overstory trees (P20 cm DBH) on sub-xeric and intermediate landscape positions experienced crown dieback. Fire-Excluded sites had fewer trees with crown dieback (11–28% across size classes) compared to burned sites (21–87%). Throughout the duration of the study, midstory and overstory maples had significantly greater likelihood of increased crown dieback compared to oaks. Paradoxically, midstory maples had a higher survival probability than similarly-sized oaks, while overstory maples had lower survival than overstory oaks. The greatest reductions in density and basal area occurred in saplings (trees 2–10 cm DBH) and midstory trees on sub-xeric and intermediate (but not sub-mesic) landscape positions. Both Less Frequent and Frequent burning reduced density and basal area of sapling and mid-story shade-tolerant species, but also of mid-story chestnut oaks. Individual tree mortality was positively correlated with char height after the first burn regardless of burn frequency. A large and significant initial sprouting response to fire dissipated over time and with repeated burning. Future assessments of mortality and vigor of residual trees following fire are essential for evaluating the long-term effectiveness of prescribed fire management in shifting species composition away from ‘mesophytic’ species and toward oaks, and could help guide management choices regarding repeated prescribed burning.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Arthur, Mary A.; Blankenship, Beth A.; Schörgendorfer, Angela; Loftis, David L.; Alexander, Heather D. 2015. Changes in stand structure and tree vigor with repeated prescribed fire in an Appalachian hardwood forest. Forest Ecology and Management. 340: 46-61. 16 p.  10.1016/j.foreco.2014.12.025

    Cited

    Google Scholar

    Keywords

    Acer, Quercus, Sprouting, Prescribed fire, Stand structure, Mesophytic

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/49886