Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Katie JenkinsCarol A. ClausenFrederick Green; Susan V. Diehl
    Date: 2015
    Source: International Biodeterioration & Biodegradation
    Publication Series: Scientific Journal (JRNL)
    Station: Forest Products Laboratory
    PDF: View PDF  (0 B)

    Description

    Copper is currently used as the key component in wood preservatives despite the known tolerance of many brown-rot Basidiomycetes. Copper-tolerant fungi, like Fibroporia radiculosa, produce and accumulate high levels of oxalate when exposed to copper. To gain insight into the mechanism of oxalate production, four F. radiculosa isolates decaying untreated and 1.2% ammoniacal copper citrate-treated wood were evaluated for the differential expression of citrate synthase, isocitrate lyase, glyoxylate dehydrogenase, a succinate/fumarate antiporter, and a copper resistance-associated ATPase pump. Samples were analyzed at 2, 4, 6, and 8 weeks for oxalate production and gene expression. ATPase pump expression increased in the presence of copper when initial oxalate concentrations were low, suggesting it functions in helping the fungus adapt to the copper-rich environment by pumping toxic copper ions out of the cell. A connection in expression levels between citrate synthase, the succinate/fumarate antiporter isocitrate lyase, and glyoxylate dehydrogenase for the four isolates was found suggesting the production of oxalate originates in the mitochondrial TCA cycle via citrate synthase, shunts to the glyoxysomal glyoxylate cycle via the succinate/fumarate antiporter, moves through a portion of the glyoxylate cycle (isocitrate lyase), and ultimately is made in the cytoplasm (gyloxylate dehydrogenase).

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Ohno, Katie M.; Clausen, Carol A.; Green, Frederick III; Diehl, Susan V. 2015. Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: The biosynthesis of oxalate. International Biodeterioration and Biodegradation. 105: 90-96.

    Cited

    Google Scholar

    Keywords

    Copper-tolerance, Brown-rot decay, Oxalate, Fibroporia, Antrodia, Gene expression

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/49892