Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Elizabeth A. FreemanGretchen G. MoisenJohn W. CoulstonBarry T. (Ty) Wilson
    Date: 2015
    Source: Canadian Journal of Forest Research. 45: 1-17.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (2.0 MB)


    As part of the development of the 2011 National Land Cover Database (NLCD) tree canopy cover layer, a pilot project was launched to test the use of high-resolution photography coupled with extensive ancillary data to map the distribution of tree canopy cover over four study regions in the conterminous US. Two stochastic modeling techniques, random forests (RF) and stochastic gradient boosting (SGB), are compared. The objectives of this study were first to explore the sensitivity of RF and SGB to choices in tuning parameters and, second, to compare the performance of the two final models by assessing the importance of, and interaction between, predictor variables, the global accuracy metrics derived from an independent test set, as well as the visual quality of the resultant maps of tree canopy cover. The predictive accuracy of RF and SGB was remarkably similar on all four of our pilot regions. In all four study regions, the independent test set mean squared error (MSE) was identical to three decimal places, with the largest difference in Kansas where RF gave an MSE of 0.0113 and SGB gave an MSE of 0.0117. With correlated predictor variables, SGB had a tendency to concentrate variable importance in fewer variables, whereas RF tended to spread importance among more variables. RF is simpler to implement than SGB, as RF has fewer parameters needing tuning and also was less sensitive to these parameters. As stochastic techniques, both RF and SGB introduce a new component of uncertainty: repeated model runs will potentially result in different final predictions. We demonstrate how RF allows the production of a spatially explicit map of this stochastic uncertainty of the final model.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Freeman, Elizabeth A.; Moisen, Gretchen G.; Coulston, John W.; Wilson, Barry T. 2015. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance. Canadian Journal of Forest Research. 45: 1-17.


    Google Scholar


    tree canopy cover, predictive mapping, classification and regression trees, random forest, stochastic gradient boosting

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page