Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Emily E. Oldfield; Alexander J. Felson; D. S. Novem Auyeung; Thomas W. Crowther; Nancy F. Sonti; Yoshiki Harada; Daniel S. Maynard; Noah W. Sokol; Mark S. Ashton; Robert J. Warren; Richard A. Hallett; Mark A. Bradford
    Date: 2015
    Source: Restoration Ecology. 23(5): 707-718.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (788.0 KB)


    Forests are vital components of the urban landscape because they provide ecosystem services such as carbon sequestration, storm-water mitigation, and air-quality improvement. To enhance these services, cities are investing in programs to create urban forests. A major unknown, however, is whether planted trees will grow into the mature, closed-canopied forest on which ecosystem service provision depends. We assessed the influence of biotic and abiotic land management on planted tree performance as part of urban forest restoration in New York City, U.S.A. Biotic treatments were designed to improve tree growth, with the expectation that higher tree species composition (six vs. two) and greater stand complexity (with shrubs vs. without) would facilitate tree performance. Similarly, the abiotic treatment (compost amendment vs. without) was expected to increase tree performance by improving soil conditions. Growth and survival was measured for approximately 1,300 native saplings across three growing seasons. The biotic and abiotic treatments significantly improved tree performance, where shrub presence increased tree height for five of the six tree species, and compost increased basal area and stem volume of all species. Species-specific responses, however, highlighted the difficulty of achieving rapid growth with limited mortality. Pioneer species had the highest growth in stem volume over 3 years (up to 3,500%), but also the highestmortality (up to 40%). Mid-successional species had lower mortality (<16%), but also the slowest growth in volume (approximately 500% in volume). Our results suggest that there will be trade-offs between optimizing tree growth versus survival when implementing urban tree planting initiatives.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Oldfield, Emily E.; Felson, Alexander J.; Auyeung, D. S. Novem; Crowther, Thomas W.; Sonti, Nancy F.; Harada, Yoshiki; Maynard, Daniel S.; Sokol, Noah W.; Ashton, Mark S.; Warren, Robert J.; Hallett, Richard A.; Bradford, Mark A. 2015. Growing the urban forest: tree performance in response to biotic and abiotic land management. Restoration Ecology. 23(5): 707-718.


    Google Scholar


    afforestation, compost, ecosystem services, green infrastructure, native species, restoration, urban forestry

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page