Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Sean P. HealeyWarren B. Cohen; Yang Zhiqiang; Ken Brewer; Evan Brooks; Noel Gorelick; Mathew Gregory; Alexander Hernandez; Chengquan Huang; Joseph Hughes; Robert Kennedy; Thomas Loveland; Kevin Megown; Gretchen MoisenTodd Schroeder; Brian Schwind; Stephen Stehman; Daniel Steinwand; James Vogelmann; Curtis Woodcock; Limin Yang; Zhe Zhu
    Date: 2015
    Source: In: Stanton, Sharon M.; Christensen, Glenn A., comps. 2015. Pushing boundaries: new directions in inventory techniques and applications: Forest Inventory and Analysis (FIA) symposium 2015. 2015 December 8–10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. p. 217.
    Publication Series: General Technical Report (GTR)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (189.0 KB)

    Description

    Forest change information is critical in forest planning, ecosystem modeling, and in updating forest condition maps. The Landsat satellite platform has provided consistent observations of the world’s ecosystems since 1972. A number of innovative change detection algorithms have been developed to use the Landsat archive to identify and characterize forest change. The inter-agency Landscape Change Monitoring System (LCMS) has been launched to engage these cutting edge methodologies in a national-scale, sustained change monitoring operation. A Science Team supporting LCMS has evaluated the relative strengths of several leading algorithms in identifying different types of forest change across a variety of ecosystems. Additionally, a machine-learning approach has been developed that uses an ensemble of algorithm outputs to predict a surface which best matches independently collected reference data. This ensemble technique integrates the strengths of each individual algorithm in different situations, and has been shown to reduce overall error in LCMS trials. The LCMS Science Team has also, in collaboration with Google, overcome significant data processing hurdles associated with analyzing tens of thousands of large images. Following Science Team recommendations, LCMS is quickly moving toward production and maintenance of validated, nationally consistent maps of the causes and timing of historical forest change.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Healey, Sean P.; Cohen, Warren B.; Zhiqiang, Yang; Brewer, Ken; Brooks, Evan; Gorelick, Noel; Gregory, Mathew; Hernandez, Alexander; Huang, Chengquan; Hughes, Joseph; Kennedy, Robert; Loveland, Thomas; Megown, Kevin; Moisen, Gretchen; Schroeder, Todd; Schwind, Brian; Stehman, Stephen; Steinwand, Daniel; Vogelmann, James; Woodcock, Curtis; Yang, Limin; Zhu, Zhe. 2015. Next-generation forest change mapping across the United States: the landscape change monitoring system (LCMS). In: Stanton, Sharon M.; Christensen, Glenn A., comps. 2015. Pushing boundaries: new directions in inventory techniques and applications: Forest Inventory and Analysis (FIA) symposium 2015. 2015 December 8–10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. p. 217.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/50338