Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): C.A. Gonzalez-Benecke; L.J. Samuelson; T.A. Martin; W.P. Cropper Jr; Kurt Johnsen; T.A. Stokes; John Butnor; P.H. Anderson
    Date: 2015
    Source: Forest Ecology and Management
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Assessment of forest carbon storage dynamics requires a variety of techniques including simulation models. We developed a hybrid model to assess the effects of silvicultural management systems on carbon (C) budgets in longleaf pine (Pinus palustris Mill.) plantations in the southeastern U.S. To simulate in situ C pools, the model integrates a growth and yield model with species-specific allometric and biometric equations and explicitly accounts for the impacts of both thinning and prescribed fire. To estimate the ex situ C pool, the model used the outputs of merchantable products from the growth and yield model with current values of forest product conversion efficiencies and forest product decay rates. The model also accounts for C emissions due to transportation and silvicultural activities. Site productivity (site quality) was the major factor controlling stand C density followed by rotation length. Thinning reduced C sequestration, as the slow growth rate of longleaf pine reduced the potential of C sequestration in forest products. Prescribed burning reduced average C stock by about 16–19%, with the majority of the reduction in the forest floor. In a comparison of longleaf pine C dynamics with slash pine (Pinus elliottii Engelm.), both species reached a similar average C stock at age 75 years, but when averaged across the whole rotation, slash pine sequestered more C. Nevertheless, for medium quality sites, C sequestration was similar between thinned 75-year rotation longleaf pine and unthinned 25-year rotation slash pine. This longleaf pine plantation C sequestration model, based on empirical and biological relationships, provides an important new tool for developing testable research hypotheses, estimating C stocks for regional assessments or C credit verification, and for guiding future longleaf pine management.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Gonzalez-Benecke, C.A.; Samuelson, L.J.; Martin, T.A.; Cropper Jr, W.P.; Johnsen, K.H.; Stokes, T.A.; Butnor, J.R.; Anderson, P.H. 2015. Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks. Forest Ecology and Management, Vol. 355: 24-36 13 p. 10.1016/j.foreco.2015.02.029

    Cited

    Google Scholar

    Keywords

    Pinus palustris plantations, Silviculture, Biomass, Prescribed Burning, Carbon Stock Modeling

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/50501