Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mohammad SafeeqGordon E. GrantSarah L. Lewis; Brian Staab
    Date: 2015
    Source: Hydrological Processes
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (7.0 MB)

    Description

    Floods are the most frequent natural disaster, causing more loss of life and property than any other in the USA. Floods also strongly influence the structure and function of watersheds, stream channels, and aquatic ecosystems. The Pacific Northwest is particularly vulnerable to climatically driven changes in flood frequency and magnitude, because snowpacks that strongly influence flood generation are near the freezing point and thus sensitive to small changes in temperature. To improve predictions of future flooding potential and inform strategies to adapt to these changes, we mapped the sensitivity of landscapes to changes in peak flows due to climate warming across Oregon and Washington. We first developed principal component-based models for predicting peak flows across a range of recurrence intervals (2-, 10-, 25-, 50-, and 100-years) based on historical instantaneous peak flow data from 1000 gauged watersheds in Oregon and Washington. Key predictors of peak flows included drainage area and principal component scores for climate, land cover, soil, and topographic metrics. We then used these regression models to predict future peak flows by perturbing the climate variables based on future climate projections (2020s, 2040s, and 2080s) for the A1B emission scenario. For each recurrence interval, peak flow sensitivities were computed as the ratio of future to current peak flow magnitudes. Our analysis suggests that temperature-induced changes in snowpack dynamics will result in large (>30–40%) increases in peak flow magnitude in some areas, principally the Cascades, Olympics, and Blue Mountains and parts of the western edge of the Rocky Mountains. Flood generation processes in lower elevation areas are less likely to be affected, but some of these areas may be impacted by floodwaters from upstream. These results can assist land, water, and infrastructure managers in identifying watersheds and resources that are particularly vulnerable to increased peak flows and developing plans to increase their resilience.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Safeeq, Mohammad; Grant, Gordon E.; Lewis, Sarah L.; Staab, Brian. 2015. Predicting landscape sensitivity to present and future floods in the Pacific Northwest, USA. Hydrological Processes. 29(26): 5337-5353.

    Cited

    Google Scholar

    Keywords

    Pacific Northwest, floods, hydrologic extremes, peak flow, rain-on-snow, climate change, principal component analysis

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/50606