Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Carlos Alberto Silva; Carine Klauberg; Andrew T. Hudak; Lee A. Vierling; Veraldo Liesenberg; Samuel P. C. e Carvalho; Luiz C. E. Rodriguez
    Date: 2016
    Source: Forestry. 89: 422-433.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (4.0 MB)


    Improving management practices in industrial forest plantations may increase production efficiencies, thereby reducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume (V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne Light Detection andRanging (LiDAR) data. Forest inventory attributes and LiDAR-derived metrics were calculated at 108 sample plots. The best LiDAR-based predictors of V were identified based on loadings calculated from a principal component analysis (PCA). After selecting these best predictors using PCA,we developed multiple regression models predicting V from selected LiDAR metrics. Metrics related to tree height and canopy depth were most effective for V prediction, with an overall model coefficient of determination (adj. R2) of 0.87, and a root mean squared error (RMSE) of 27.60 m3 ha-1 (i.e. relative RMSE = 9.99 per cent).We used this model to map stem V of Eucalyptus hybrid clones across the full LiDAR data extent. The accuracy and precision of our results show that LiDAR-derived V is appropriate for updating Eucalyptus forest base maps and registries in the paper and pulp supply chain. However, further studies are necessary to evaluate and compare the cost of acquisition and processing of LiDAR data against conventional V inventory in this system.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Silva, Carlos Alberto; Klauberg, Carine; Hudak, Andrew T.; Vierling, Lee A.; Liesenberg, Veraldo; Carvalho, Samuel P. C. e; Rodriguez, Luiz C. E. 2016. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. Forestry. 89: 422-433.


    Google Scholar


    supply chain, LiDAR metrics, remote sensing, Eucalyptus spp., forest management, multivariate statistics

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page