Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R.E. Dickson; M.D. Coleman; D.E. Riemenschneider; J.G. Isebrands; G.D. Hogan; D.F. Karnosky
    Date: 1998
    Source: Can. J. For. Res. 28: 1706-1716 (1998)
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (403 KB)


    A wide variety of hybrid poplar clones are being introduced for intensive culture biomass production, but the potential clonal or genotypic response to increasing tropospheric carbon dioxide (CO2), ozone (O3), and their interactions are unknown. To study these effects, we exposed five different hybrid Populus clones to increased concentrations of CO2, O3, and CO2 + O3 in open-top chambers for one growing season and determined growth responses. Exposure to elevated CO2 increased height growth, dry mass, and basal area; exposure to O3 decreased all three of these growth responses. Exposure impact differed among the different plant parts (leaf, stem, and roots) and among the clones. These differences were associated with different growth strategies or carbon allocation patterns inherent in the different clones. The fastest growing clones had the greatest response to O3 treatment. The addition of CO2 to the O3 exposure counteracted the negative impact of O3 in all plant components except leaf mass (e.g., CO2 + O3 plant mass equaled control plant mass) in all of the clones. But correspondingly, added O3 negated increased growth from CO2. Genetic variation in response to atmospheric pollutants must be considered even in closely related genotypes found in Populus culture.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Dickson, R.E.; Coleman, M.D.; Riemenschneider, D.E.; Isebrands, J.G.; Hogan, G.D.; Karnosky, D.F. 1998. Growth of five hybrid poplar genotypes exposed to interacting elevated CO2 and O3. Can. J. For. Res. 28: 1706-1716 (1998)

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page